diff --git a/chapter_convolutional-neural-networks/pooling.md b/chapter_convolutional-neural-networks/pooling.md index e82895926..d673ab2f6 100644 --- a/chapter_convolutional-neural-networks/pooling.md +++ b/chapter_convolutional-neural-networks/pooling.md @@ -13,7 +13,7 @@ 与卷积层类似,汇聚层运算符由一个固定形状的窗口组成,该窗口根据其步幅大小在输入的所有区域上滑动,为固定形状窗口(有时称为*汇聚窗口*)遍历的每个位置计算一个输出。 然而,不同于卷积层中的输入与卷积核之间的互相关计算,汇聚层不包含参数。 -相反,池运算是确定性的,我们通常计算汇聚窗口中所有元素的最大值或平均值。这些操作分别称为*最大汇聚层*(maximum pooling)和*平均汇聚层*(average pooling)。 +相反,汇聚运算是确定性的,我们通常计算汇聚窗口中所有元素的最大值或平均值。这些操作分别称为*最大汇聚层*(maximum pooling)和*平均汇聚层*(average pooling)。 在这两种情况下,与互相关运算符一样,汇聚窗口从输入张量的左上角开始,从左往右、从上往下的在输入张量内滑动。在汇聚窗口到达的每个位置,它计算该窗口中输入子张量的最大值或平均值。计算最大值或平均值是取决于使用了最大汇聚层还是平均汇聚层。